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Abstract— Autonomous mobile robots of today are software- benefit from modern software development technology with
intensive systems. The rapidly growing code base of robotics respect to maintainability, scalability and reliability.
projects therefore requires advanced software development — The remainder of the paper is organized as follows. The
methods and technologies, to ensure their scalability, reliability - . -
and maintainability. In this paper, we analyze modern concepts §ec0nd sectloq of the paper mtroduceg the requirements
and technologies that we applied to our software development linked to robotic software development in the context of
process and show how they contribute to enhancing these design our research area. The third section of the paper expose
dimensions. how some key practices in software development can help
construct robotic software. In particular we show how
| INTRODUCTION reusing existing assets, using middle-ware, creating abstract
Today most of robotics systems are software-intensiviaterfaces and decoupling the components lead to a more
systems, and thus call for appropriate use of developmestalable and flexible software system. The benefits of the
methodologies and tools. Advances in robotics capabilitigmplemented solution regarding the scalability and flexibility
go in pair with advances in computing systems. The firséf our robotic systems are exposed in the fourth section.
robots obviously had very limited computing capacities com-
pared to today. In the past a single person could carefully !l- ROBOTIC SOFTWARE FOR EXPLORATION ROBOTS
craft the entire software for a robot, often using a bottom- The Intelligent Robotics Group (IRG) at NASA Ames
up approach to keep the system functional with the scar¢® dedicated to improving the understanding of extreme
resources available. Today, most robots are driven by pownvironments, remote locations, and uncharted worlds. IRG
erful processor(s) with ample memory, and their softwareonducts applied research in a wide range of areas with
is designed and written by an entire team of people, oftesn emphasis on robotics system science and field testing.
distributed among various institutions. Current applications include planetary exploration, human-
The previous SDIR-05 workshop focused on identifyingobot fieldwork, and remote science. In this context, the
problems in robotic software development and proposindRG rover software is subject to the two classical difficulties
solutions. These solutions mostly consist of elaborate robot@ncountered by current robotics systems: 1) managing the
architectures that have been developed to address the cdntrinsic complexity due to the multiple domains involved
plexity of robotic systems. Rather than presenting anothér robotics and its inherent connection to a large number of
architecture, we would like to illustrate in this paper howunique hardware devices; 2) managing scalability as more
a wider adoption of proven methodologies from the softsensors, actuators and control schemes are integrated as well
ware engineering field is highly beneficial to robotics. Weas with respect to multi-robot missions that include human-
acknowledge that robotics software has many specificitigsbot interaction.
that make it difficult to develop for, but we also strongly The robotic software developed at IRG needs to support
believe that advanced software engineering practices atite variety of hardware platforms currently in use: six
technologies can be leveraged in the field of robotics tavheeled Martian rover analog9, multiple versions of our
improve the quality, reliability and maintainability of robotic low cost four wheel roverK10, and the latest Antarctic
systems. traverse roveK11l IRG uses these robots for diverse exper-
Current research platforms for space robotics, such as tlmeents calling for various sensor or actuator configurations
SCOUT, ATHLETE or Robonaut robots [1]-[3] significantly (orientable spotlight, pan-tilt camera, indoor tracking system,
extend the capabilities available to today’s planetary robotsutdoor GPS, etc.) and conducts field tests requiring inte-
such as the Mars Exploration Rover (MER) [4]. In spac@ration of various scientific instruments (microscope imager,
robotics, space qualified hardware apply that will probabldgrilling system, ground penetrating radar, etc.). In addition
restrict these robots’ computational power to below whab the robot controller itself, the robotic software developed
earth-bound robot systems have available at the same tina. the IRG includes components from the group’s areas
Nevertheless, the targeted feature set will result in softwad expertise in applied computer vision and human-robot
systems with such a degree of complexity that it will vastlyinteraction. Finally, the robot controller needs to smoothly



ELEVATE THE LEVEL OF ABSTRACTION
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Fig. 2. "Elevate the level of abstraction” pattern [6]

A. Reuse existing software assets

; Reuse of software assets can save significant time to
TR a robotic team, enabling it to focus on its core research
Fa 1 The IRG i o Each o ot Iinstead of developing or redeveloping software. However,
1g. 1. e S rovers currently In service. £ach rover nas compilete . . .
different hardware controllers and internal architecture and was designed %Pde r.egse IS not an easy t_aSk since it presuPpOS_es that
different types of experiment. Nonetheless they share a large common cdifte existing assets were designed to be reused. It is hard
base and can be controlled using the same network-transparent interfaceg. anticipa‘[e all the usages of the Component during the
original design of a reusable component. CLARAty [8], the
Coupled Layer Architecture for Robotic Autonomy lead by
integrate with the interactive 3D visualization and monitoring"® J&t Propulsion Laboratory (JPL), provides an extensive
set of robotics frameworks such as locomotion and naviga-

systems for ground control. ' s ) X
. . tion subsystems. Applying them to different physical robots
To manage this complexity and create a scalable system : .
the robotic software is required to: can beth save development time and leverage the _robotlc
expertise encapsulated in the framework. IRG contributed
« reuse control frameworks developed in-house, or bjor several years to the CLARALty project on specific topics,
external groups, to minimize the code developmendnd in return, benefits from this large code base targeted
and maximize the reliability (same framework used inp planetary rovers. Currently IRG’s robots are using several
multiple scenarios) high level capabilities offered by CLARAty. One requirement
« handle the distributed characteristic of mission scenariqg gain access to the CLARAty control frameworks is to
involving multiple robots and multiple modes of inter-write adaptations of generic hardware abstractions for the
action targeted hardware device.
o include a modular and flexible robot controller to 1) Hardware Devices:As with most robotic systems, the
quickly and easily adapt the system to new scenariosvarious platforms differ vastly with regard to the sensor,
actuator and controller hardware. IRG created adaptations
I1l. SOLUTION APPROACH of several base CLARAty classes to benefit from higher
level constructs. The best example is the adaptation of the
Despite all its specificities, robotic software nonetheles€LARAty generic "Controlled Motor” to the K9, K10 and
remains software, and thus good general principles and bégt1 rovers, enabling to use the "Locomotion” framework
practices are applicable. So it is no surprise that the solutiovhich computes motor commands from higher level drive
we choose to address our robotic scalability and complexitgommands.
problem follows one of the key practices used as foundation 2) Control Frameworks: By abstracting the hardware
of the Rational Unified Process (RUP) [5], a widely usedlevices, the IRG rovers benefit mainly from two control
software development methodology: "Elevate the level oframeworks provided by CLARAty: the "Locomotor” and
abstraction” (see Fig. 2). the "Navigator”. For example, the Navigator will compute a
This RUP principle encompasses a number of practic&squence of drive commands to reach a goal while avoiding
that contribute to the overall scalability and flexibility of soft-0obstacles extracted from a point cloud.
ware design. In this paper, we concentrate on the foIIowing' Use high level software systems

proven practices: "reusing existing assets”, "leverage higher

level frameworks”, "focus on the architecture” and "decou- _T(_) _e'_‘ab'_e the scal_a bility - of our robotic system while
pling of components”. In addition, this paper introduces hoWninimizing its complexity, we consider each robot controller,
our project leverages some advanced software technologi@gt,ContrOI systerr:js (user ﬁU:] ?S”‘l’”a‘%t CF’fT“”_‘a”ds’ planner
like the middleware CORBA [7]. We are especi::xllyinteresteﬁlC ions, etc.) and every high level scientific instrument as

'n_ h_OW thes_e practices anq teChn0|09'es could be app“edlKQ, the various K10 and K11 have different hardware controllers,
within robotic software architectures. meaning several different adaptation of the generic Controlled Motor

K9 Rover




individual components. An additional requirement We PUlig Langusge Independart Heﬁaces/
on the architecture is to allow each of these componen [mierace seiniions | [Javaclents |
to run on different nodes and communicate through th
network, while keeping efficiency for localized components by gri-Bubsytem
Middleware technologies, like CORBA, can manage thi
distributedness of components and their communication. ﬂ GCdt> ﬂ
The robotics middleware Miro [9] makes extensive usi <CORBAInterface ari-Navigator
of CORBA as communication infrastructure and customize] EERETEERr
it for the robotics domain. Our approach is to apply thes
middleware concepts to our robot software infrastructur, «Code .
and factor CLARAty frameworks into network transparen Generatian: Sansrations -
services with high-level abstract interfaces. C++ Semvants e Client
Miro offers support for the following paradigms to the
robotic world: POA_grizSubsystem grizzgubsystarn
o Distributed or localized communication using the
CORBA infrastructure ﬁ ?ﬂ
« A set of abstract interfaces to allow communicatior POA_gti:Navigator ari:Mavigatar
between objects and the propagation of data structur:
o A Publish/Subscribe protocol to distribute telemetry
among components of the system

« A Parameter and Configuration Management fram(:"\,Vorll—'(|g. 3. From the Interface Definition Language, interfaces for various

. L . rogramming language are generated
C. Focus on architecture with interface definitions preg 9 anguag 9
Separating interface definition from implementation is a
pre-requisite for a consistent and extensible architectur

It also enables parallel development that often takes pla ts of the different components for the different run-time
within a team or among distributed teams across institution opfigurations of a robotic system. Sensors are added to
This separation can be performed using interface classes tﬂg‘ag system or temporarily removea. Different application
g;?] t;:inpr(;)r:f/ n n?gtraco?jpt d];oglafggsgiulﬁgorr;e![ﬂféfagsﬁrilt?srs]géenarios req_uire a_dditional comp_onents in the system. Sq the
and no data. Recent programming’ languages, such as J goft_ware co_nﬂ_guratm_n of the applied system changes rapidly
. . ' . afYL?i’lng the initial testing, and even after deployment.
provide th'.s concept as part of the Iang_uage. It_|s possible ° CORBA based systems and similar middleware-oriented
ggg;;z;htlz ggrc]lfrzt tlr:]etihnetecr:f;:%gomam by using a neu”‘aesigrjs allow different mod_ules of t_he _s_ystem to _b_e started
in their own process, allowing the individual addition and
EM&moval of modules to the run-time configuration. Never-
I}heless, managing half a dozen or more processes is not a

Language (IDL) [10]. As shown in Fig. 3, language SP4rivial task. A specific startup sequence is usually required

IC[';:_C '_Ir_]kt‘eerfgggz a;?letrhaigr il:r?rzg;i”?/m%?; igef((j)rfrrﬂmtiﬂ: ue to dependencies of the different modules. Often, the
' 9 pEarameterization changes for individual runs of a module.

:;ii?fg?ean%els:]g(ﬂggzé Tchaen bael?G‘;zzfaé?acvi?rzo?gzmssaxgttfgb;turthermore, separating modules_ into individuallprocesses
controller. Using this scheme, the interface definition is kepcfn the same machine can result in unnecessary |_nt(_arpr.ocess
unigue across the project fér all programming Ianguagecsommum.catlon over.head'where co-location ppt|m|zat|pns
used. Although the generated code by itself does not i c possible. Toc_JIs like MlcroRapto_r [11] help N managing

' : . nprocesses on different machines in a distributed robotics
plement strictly pure abstract interfaces, developers canngt

. . . i .. scenario, but can do little about combining services on the
modify the code without changing the interface deﬂnltlon‘,&,jlme rlnachlijne I u ining semvt
This scheme effectively enforces the separation of interface ' .
. . 1) Component modelSo far, generally applicable com-
from implementation. . . .
ponent models are not readily available to the robotics
D. Decoupling domain. They are gither Iim_ited i_n scope by design, such as
) o ) JaveBeans, which is essentially tied to the Java world. Others
_Abstract interface definitions and a service-based dgje jimited in availability, such as the CORBA component
sign allow for decoupllng_ the individual subsystems 'ntomodel (CCM) [12], for which interoperable implementations
a component-based architecture. Component-based desigifye still not hit the mainstream. Nevertheless, off-the-

) _ _ _ shelf available frameworks (such as ACE [13]) can provide
Interface classes can be created in C++ using pure virtual methods, f f b d hti ithi
However, nothing prevents a developer to mix interface definition anflPOrtant features of a component-based archtitecture within

implementation. todays robotic applications.

Fe‘quires the ability to flexibly wire the inputs and out-



The high degree of decoupling of individual roboticspliers) from information sinks (data consumers) by an in-
services allows for combining them in a Service Orientetermediate object, the event channel. This is mostly used in
Architecture (SOA), using the Component Configurator pata push-model of communication, where the data consumers
tern. Fig. 4 shows an example of SOA applied to ouregister an instance of a callback interface with the event
robots. The services are grouped into multiple dynamichannel and are called when suppliers push new data into
libraries and the controller uses run-time linking to load anthe channel. The notification service can push data to the
configure the individual components for a specific scenari@onsumer in a separate thread and also provides advanced
This minimizes the need for recompilation and relinkingfiltering capabilities to decouple the control flow between
shortening turnaround times, as well as reducing the memotlye producer and the consumer side.
footprint of the controller. Unused parts of the system, 3) Control flow decoupling: We also applied another
such as controllers for unused sensors or algorithms nobncept from the distributed systems middleware to further
needed within a specific scenario, do not get loaded intdecouple control flow between clients and servers for regu-
memory. The Component Configurator pattern also encapdar method calls: Asynchronous Method Invocation (AMI).
lates reconfigurability, allowing one to discard and re-enablRobot operations often take a lot of time. For instance, a
services without the need to stop the other controller servicasavigation task for a robot can take several minutes. At the
It also helps to prevent the software system from becomingient side, it is undesirable to have a blocking operation
bloated by components from former application scenariahat hands off the thread of control to the server side for
that accidentally get interlinked with the core system anthe complete operation. At the same time, it is of utter
can no longer be removed without significant developmeritnportance for the client to know the outcome of the task
effort and risk to overall system stability. The discardabilitywhich was handed of to the server. The server side design
of individual components encourages factoring out reusabie greatly simplified by the use of a blocking semantics,
parts into base libraries, keeping the individual subsystenrgnere the controller exits the control loop after the task is
optional to the overall robot controller. finished and returns success or failure to the caller. AMI
provides a communication pattern for this problem set. In
Lemp Corraterrom componerts”” essence, it allows a blocking servant method to be called
in a non-blocking manner. The IDL-compiler generates an
alternate method to call in the client-side proxy, which will
N immediately return after the call is dispatched to the servant.
T fraprr The client can provide a callback that will be executed once
the servant has finished. The return value and out-parameters
of the method are the parameters of the callback’s signature.
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for simplicity

The abstractions and modularizations described in the
atisLosomaton priF ssEstimator above section allowed for a set of improvements in our robot

Jj e g] control infrastructure, that would have been very difficult to
/ g RACE Services achieve without these concepts and technologies.

%ACE Servicen K10_Esti mator
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IR Extended A. Advances in Scalability
KAD Model Claraty Khal man Filter

Locametor a) Abstract interfaces:The abstract service interfaces
JL allow control of different robots through the same interface.
Furthermore, they facilitate the replacement of the robot
o controller with a robot simulator without changing anything
on the client side.
b) Publisher/subscriber architecture: The

Fig. 4. lllustration of a subset of the components used to dy”amica”lbublisher/subscriber architecture used for telemetry
construct a robot controller using the Service Configurator pattern. Thg. . . .. . . .
connections between the components are created at run-time. When aser\al%t”buuon decouples the suppliers of information from the

is started, the corresponding component exposes its interfaces so they €ansumers. This enables easy replacement of input streams
be discovered by the other components. for sensor-centric processes, such as pose estimation,
with logged data streams for development and evaluation
2) Publish-Subscribe architecturdvliddleware provided purposes.
infrastructure can also enable further decoupling of the c¢) Link time dependenciesthe use of abstract service
components of a software architecture. CORBA provideimterfaces resulted in a tremendous reduction in link-time
multiple specifications for publisher-subscriber architectureslependencies to other subsystems. Where a former client ap-
The most feature-rich is the Notification Service, which iglication communicating with a high-level interface drew in
configured in Miro for data distribution purposes. Publishermore than 40 conceptually unnecessary library dependencies
subscriber models decouple information sources (data sup-other robot software modules, the abstract interface design

griz:MotorGroup




is limited to about half a dozen. These libraries contain codeatures to increase flexibility and reusability. The result of
actually used by the client implementation. this work is a "loosely coupled, highly cohesive” system
d) Remote inspectabilityAn important side effect of providing a reconfigurable software architecture adaptable to
network transparent high-level interfaces is that they addifferent robotic application scenarios.
remote inspectability for each individual service. This is an The benefits in productivity, reliability, and maintainability
important entry point for scripting, unit testing, and online-of our new software architecture convince us that there
supervision of the system in operation. In case of a failurés much to leverage from the software methodologies for
the individual components can be analyzed as part of thibe robotic field. We hope that this paper will encourage
running system, tremendously reducing the time to locatée robotic community to utilize more of the practices and
the culprit. This interaction can even be used to work arourtgéchnologies readily available from the software engineering
some of the problems the autonomous system encountersfisid.

human intervention. The work in this paper was mostly centered on a single
] o robot system. Our ongoing research targets, among others,
B. Advances in Flexibility multi-robot applications with respect to team fault-tolerance

Component-based architectures provide a very high levabainst individual or temporary robot dropouts. In this con-
of flexibility by allowing for extensive configurability. This text we continue leveraging advanced software development
however requires proper support to stay manageable. Theethods and technologies.
different components need to access other components for
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